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Institut de Mathématiques de l’Académie Roumaine

Bucarest
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Appliquées, 26-31 Août 2010, Poitiers
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1. Analysis of a system of implicit variational inequalities

Let (V, 〈. , .〉, ‖ · ‖), and (H, (·, ·)H , ‖ · ‖H) be two real Hilbert. Let F :

V × V → R be a Gâteaux differentiable functional on V and assume

that there exist two constants α, β > 0 for which

α‖v − u‖2 ≤ 〈F ′(v) − F ′(u), v − u〉 (1)

and

‖F ′(v) − F ′(u)‖V ′ ≤ β‖v − u‖ (2)

for all u, v ∈ V , where F ′ is the Gâteaux derivative of F . Let K

be a closed convex cone contained in V with its vertex at 0 and let

(K(g))g∈V be a family of nonempty closed convex subsets of K satis-

fying the following conditions: 0 ∈ K(0) and

if gn → g in V, vn ∈ K(gn) and vn ⇀ v in V then v ∈ K(g). (3)



We assume that for all g ∈ V there exists an operator γ(g, ·) : K(g) → H

such that γ(0,0) = 0,

if gn → g in V, vn ∈ K(gn) and vn ⇀ v in V

then γ(gn, vn) → γ(g, v) in H
(4)

and for all gi ∈ V , vi ∈ K(gi), i = 1, 2,

‖γ(g1, v1) − γ(g2, v2)‖H ≤ k1(‖g1 − g2‖ + ‖v1 − v2‖). (5)

j(g, v, ·) is sequentially weakly continuous on V ∀ g ∈ V, v ∈ K(g),

(6)

j(g, v, ·) is sub-additive for all g ∈ V, v ∈ K(g), that is (7)

j(g, v, w1 + w2) ≤ j(g, v, w1) + j(g, v, w2) ∀ g, w1,2 ∈ V, v ∈ K(g),

j(g, v, ·) is positively homogeneous for all g ∈ V, v ∈ K(g), (8)

that is j(g, v, θw) = θj(g, v, w) ∀ g, w ∈ V, v ∈ K(g), θ ≥ 0,

j(0,0, w) = 0 ∀w ∈ V, (9)



and there exists k2 > 0 such that

|j(g1, v1, w2) + j(g2, v2, w1) − j(g1, v1, w1) − j(g2, v2, w2)|

≤ k2(‖g1 − g2‖ + ‖γ(g1, v1) − γ(g2, v2)‖H)‖w1 − w2‖

∀ gi, wi ∈ V, vi ∈ K(gi), i = 1, 2.

(10)

We assume that k1 and k2 satisfy the following condition:

k1k2 < α. (11)

For all g ∈ V , we consider a functional b(g, ·, ·) : K(g) × V → R which

satisfies the following conditions:

∀ g ∈ V, v ∈ K(g), b(g, v, ·) is linear and continuous on V (12)

and

|b(g1, v1, w) − b(g2, v2, w)| ≤ kb(‖g1 − g2‖

+‖v1 − v2‖)‖w‖ ∀ gi, w ∈ V, vi ∈ K(gi), i = 1, 2,
(13)

Let f ∈W1,2(0, T ;V ) be given and u0 ∈ K(f(0)) be the unique solution

of the following implicit elliptic variational inequality:

〈F ′(u0), w − u0〉 + j(f(0), u0, w) − j(f(0), u0, u0) ≥ 0 ∀w ∈ K. (14)



We consider the following evolution system of coupled variational in-

equalities.

Problem P: Find u ∈W1,2(0, T ;V ) such that

(P )































u(0) = u0, u(t) ∈ K(f(t)) ∀ t ∈]0, T [,

〈F ′(u(t)), v − u̇(t)〉 + j(f(t), u(t), v) − j(f(t), u(t), u̇(t))

≥ b(f(t), u(t), v − u̇(t)) ∀ v ∈ V a.e. on ]0, T [,

b(f(t), u(t), w − u(t)) ≥ 0 ∀w ∈ K, ∀ t ∈]0, T [.

We approximate problem P by using an implicit time discretization

scheme. For ν ∈ N∗, we set ∆t := T/ν, tι := ι∆t and Kι := K(f(tι)),

ι = 0,1, ..., ν. If θ is a continuous function of t ∈ [0, T ] valued in some

vector space, we use the notations θι := θ(tι) unless θ = u, and if

ζι, ∀ ι ∈ {0,1, ..., ν}, are elements of some vector space, then we set

∂ζι :=
ζι+1 − ζι

∆t
∀ ι ∈ {0,1, ..., ν − 1}.



We denote u0 := u0 and we approximate (P ) using the following se-

quence of incremental problems (P ιν)ι=0,1,...,ν−1 .

Problem Pιν: Find uι+1 ∈ Kι+1 such that

(P ιν)



















〈F ′(uι+1), v − ∂uι〉 + j(f ι+1, uι+1, v) − j(f ι+1, uι+1, ∂uι)

≥ b(f ι+1, uι+1, v − ∂uι) ∀ v ∈ V,

b(f ι+1, uι+1, w − uι+1) ≥ 0 ∀w ∈ K.

It is easily seen that for all ι ∈ {0,1, ..., ν−1} the problem P ιν is equiva-

lent to each of the following variational inequalities: find uι+1 ∈ Kι+1

such that

(Qιν)







〈F ′(uι+1), w − uι+1〉 + j(f ι+1, uι+1, w − uι)

−j(f ι+1, uι+1, uι+1 − uι) ≥ 0 ∀w ∈ K,



Lemma 1 Let uι+1 be the solution of (Qιν), ι ∈ {0,1, ..., ν−1}. Then

‖u0‖ ≤M0‖F
′(0)‖ +M1‖f

0‖, ‖uι+1‖ ≤M0‖F
′(0)‖ +M1‖f

ι+1‖, (15)

‖ui+1 − ui‖ ≤M1‖f
ι+1 − f ι‖, (16)

ν−1
∑

ι=0

‖ui+1 − ui‖2 ≤M2
1∆t

T
∫

0

‖ḟ(τ)‖2 dτ, (17)

where

M0 =
1

α− k1k2
, M1 =

(k1 + 1)k2
α− k1k2

. (18)

Now, if we define














uν(0) = ûν(0) = u0, fν(0) = f0 and

∀ ι ∈ {0,1, ..., ν − 1}, ∀ t ∈]tι, tι+1],

uν(t) = uι+1, ûν(t) = uι + (t− tι)∂uι, fν(t) = f ι+1,



then for all ν ∈ N∗ the sequence of inequalities (P ιν)ι=0,1,...,ν−1 is equiva-

lent to the following incremental formulation: for almost every t ∈ [0, T ]

(Pν)



























uν(t) ∈ K(fν(t)), 〈F ′(uν(t)), v −
d

dt
ûν(t)〉 + j(fν(t), uν(t), v)

−j(fν(t), uν(t),
d

dt
ûν(t)) ≥ b(fν(t), uν(t), v −

d

dt
ûν(t)) ∀ v ∈ V,

b(fν(t), uν(t), w − uν(t)) ≥ 0 ∀w ∈ K.

Also, the sequence (Qιν)ι=0,1,...,ν−1 implies the following inequality: for

almost every t ∈ [0, T ]

(Rν) 〈F ′(uν(t)), w − uν(t)〉 + j(fν(t), uν(t), w − uν(t)) ≥ 0 ∀w ∈ K,

which is clearly equivalent to the following inequality: for almost every

t ∈ [0, T ]

(R̂ν) F (w)−F (uν(t))+j(fν(t), uν(t), w−uν(t)) ≥
α

2
‖w−uν(t)‖

2 ∀w ∈ K.



Lemma 2 There exist a subsequence of (uν, ûν)ν, denoted by (uνp, ûνp)p ,

and an element u ∈W1,2(0, T ;V ) such that

uνp(t) ⇀ u(t) in V ∀ t ∈ [0, T ], (19)

ûνp ⇀ u in W1,2(0, T ;V ), (20)

d

dt
ûνp ⇀ u̇ in L2(0, T ;V ). (21)

Also, for all s ∈ [ 0, T ], we have u(s) ∈ K(f(s)) and

lim inf
p→∞

s
∫

0

j(fνp(t), uνp(t),
d

dt
ûνp(t)) dt ≥

s
∫

0

j(f(t), u(t), u̇(t)) dt. (22)



We can prove the following strong convergence and existence result.

Theorem 1 Under the assumptions (1)-(14) every convergent sub-

sequence of (uν, ûν)ν, still denoted by (uν, ûν)ν, and its limit u ∈

W1,2(0, T ;V ), given by lemma 2, satisfy the following properties:

uν(t) → u(t) in V ∀ t ∈ [0, T ], (23)

ûν → u in L2(0, T ;V ), (24)

and u is a solution of problem P .



2. Internal approximation and convergence analysis

We prove a convergence result for a method based on an internal ap-

proximation and a backward difference scheme.

First, we consider a semi-discrete approximation of (P ), which extends

some classical internal approximations. Let (Vh)h be an internal ap-

proximation of V , that is a family of finite-dimensional subspaces of V

which satisfies:

there exist U ⊂ V such that U = V and

∀ v ∈ U, ∃ vh ∈ Vh for each h, such that vh → v in V.
(25)

Let (Kh)h be a family of closed convex cones with their vertices at 0

such that Kh ⊂ Vh for all h and (Kh)h is an internal approximation of

K, i.e.

if vh ∈ Kh for all h and vh ⇀ v then v ∈ K, (26)

∀ v ∈ K, ∃ vh ∈ Kh for each h, such that vh → v in V. (27)



Let (Kh(g))g∈V be a family of nonempty closed convex subsets of Kh
such that 0 ∈ Kh(0) for all h, satisfying the following conditions:

if gn → g in V, vhn ∈ Kh(gn) and vhn → vh in Vh then vh ∈ Kh(g),

(28)

if vh ∈ Kh(g) for all h and vh ⇀ v then v ∈ K(g) ∀ g ∈ V. (29)

We assume that for all g ∈ V there exists an operator γh(g, ·) : Kh(g) →

H such that γh(0,0) = 0 and for all gi ∈ V , vhi ∈ Kh(gi), i = 1, 2,

‖γh(g1, vh1) − γh(g2, vh2)‖H ≤ k1(‖g1 − g2‖ + ‖vh1 − vh2‖). (30)

For all g ∈ V , let jh(g, ·, ·) : Kh(g) × Vh → R be a functional satisfying

the following conditions for all g ∈ V :

if vh ∈ Kh(g) for all h, vh ⇀ v in V and wh ⇀ w in V

then lim
h→0

jh(g, vh, wh) = j(g, v, w),
(31)

for all h and vh ∈ Kh(g) jh(g, vh, ·) is sub-additive, (32)



for all h and vh ∈ Kh(g) jh(g, vh, ·) is positively homogeneous, (33)

jh(0,0, wh) = 0 ∀wh ∈ Vh, (34)

and

if vh(t) ∈ Kh(g(t)) for all h and t ∈ [0, T ], vh ⇀ v in W1,2(0, T ;V )

then lim inf
h→0

T
∫

0

jh(g(t), vh(t), v̇h(t)) dt ≥

T
∫

0

j(g(t), v(t), v̇(t)) dt (35)

for all g ∈ C([0, T ];V ),

|jh(g1, vh1, wh2) + jh(g2, vh2, wh1) − jh(g1, vh1, wh1) − jh(g2, vh2, wh2)|

≤ k2(‖g1 − g2‖ + ‖γh(g1, vh1) − γh(g2, vh2)‖H)‖wh1 − wh2‖ (36)

∀ gi ∈ V, vhi ∈ Kh(gi), whi ∈ Vh, i = 1, 2.

Now we consider the following semi-discrete problem.



Problem Ph: Find uh ∈W1,2(0, T ;Vh) such that

(Ph)































uh(0) = u0h, uh(t) ∈ Kh(f(t)) ∀ t ∈]0, T [,

〈F ′(uh(t)), vh − u̇h(t)〉 + jh(f(t), uh(t), vh) − jh(f(t), uh(t), u̇h(t))

≥ b(f(t), uh(t), vh − u̇h(t)) ∀ vh ∈ Vh a.e. on ]0, T [,

b(f(t), uh(t), zh − uh(t)) ≥ 0 ∀ zh ∈ Kh, ∀ t ∈]0, T [,

The full discretization of (Ph) is obtained by using an implicit scheme

as in Section 2 for (P ). For u0
h := u0h and ι ∈ {0,1, ..., ν − 1}, we

define uι+1
h as the solution of the following problem.

Problem Pι
hν: Find uι+1

h ∈ Kι+1
h such that

(P ιhν)























〈F ′(uι+1
h ), vh − ∂uιh〉 + jh(f

ι+1, uι+1
h , vh) − jh(f

ι+1, uι+1
h , ∂uιh)

≥ b(f ι+1, uι+1
h , vh − ∂uιh) ∀ vh ∈ Vh,

b(f ι+1, uι+1
h , zh − uι+1

h ) ≥ 0 ∀ zh ∈ Kh,

where Kι+1
h := Kh(f

ι+1).



If we define the functions


























uhν(0) = ûhν(0) = u0h and

∀ ι ∈ {0,1, ..., ν − 1}, ∀ t ∈]tι, tι+1],

uhν(t) = uι+1
h ,

ûhν(t) = uιh + (t− tι)∂uιh,

then for all ν ∈ N∗ the sequence of inequalities (Phιν )ι=0,1,...,ν−1 is

equivalent to the following incremental formulation:

for almost every t ∈ [0, T ]

(Phν)



























uhν(t) ∈ Kh(fν(t)), 〈F ′(uhν(t)), vh −
d

dt
ûhν(t)〉 + jh(fν(t), uhν(t), vh)

−jh(fν(t), uhν(t),
d

dt
ûhν(t)) ≥ b(fν(t), uhν(t), vh −

d

dt
ûhν(t)) ∀ vh ∈ Vh,

b(fν(t), uhν(t), wh − uhν(t)) ≥ 0 ∀wh ∈ Kh.

We have the analogue to theorem 1 in the finite dimensional case.



Theorem 2 Assume that (1), (2), (12), (13), (28), (30), (32)-(34),

(36) hold. Then there exists a subsequence of (uhν, ûhν)ν, still denoted

by (uhν, ûhν)ν, such that

uhν(t) → uh(t) in V ∀ t ∈ [0, T ], (37)

ûhν → uh in L2(0, T ;V ), (38)

where uh is a solution of (Ph).

Theorem 3 Under the assumptions (1)-(14), (25)-(36) there exists a

subsequence of (uh)h such that

uh(t) → u(t) in V ∀ t ∈ [ 0, T ], (39)

uh → u in L2(0, T ;V ), (40)

u̇h ⇀ u̇ in L2(0, T ;V ), (41)

where u is a solution of (P ).



Theorem 4 Under the assumptions of theorem 3, there exists a sub-

sequence of (uhν)hν such that

uhν(t) → u(t) in V ∀ t ∈ [0, T ], (42)

u̇hν ⇀ u̇ in L2(0, T ;V ), (43)

where u ∈W1,2(0, T ;V ) is a solution of (P ).

Furthermore any cluster point of (uhν)hν is a solution of (P ).



3. Subspace correction approximation

Let V1, · · · , Vm be some closed subspaces of V . We consider a convex

subset K ⊂ V satisfying the following assumption.

Assumption 1 There exists a constant C0 such that for any w, v ∈ K

and wi ∈ Vi with w +
∑i
j=1wj ∈ K, i = 1, · · · ,m, there exist vi ∈ Vi,

i = 1, · · · ,m, satisfying

w+
i−1
∑

j=1

wj + vi ∈ K for i = 1, · · · ,m, (44)

v − w =
m
∑

i=1

vi, (45)

and

m
∑

i=1

‖vi‖ ≤ C0



‖v − w‖ +
m
∑

i=1

‖wi‖



 . (46)



Let ϕ : K × K → R be a convex and lower semicontinuous functional
with respect to the second variable such that

|ϕ(v1, w2) + ϕ(v2, w1) − ϕ(v1, w1) − ϕ(v2, w2)|

≤ k1k2||v1 − v2||||w1 − w2|| ∀v1, v2, w1, w2 ∈ K
(47)

and suppose that

Assumption 2

m
∑

i=1

[ϕ(u,w+
i−1
∑

j=1

wj + vi) − ϕ(u,w+
i−1
∑

j=1

wj + wi)]

≤ ϕ(u, v) − ϕ(u,w+
m
∑

i=1

wi)

(48)

for any u ∈ K, and for v, w ∈ K and vi, wi ∈ Vi, i = 1, . . . ,m, as in
Assumption 1.

We consider the problem of finding u ∈ K, the solution of the following
quasi-variational inequality

〈F ′(u), v − u〉 + ϕ(u, v) − ϕ(u, u) ≥ 0 ∀ v ∈ K. (49)



Algorithm 1 We start with an arbitrary u0 ∈ K and at iteration

n+ 1, having un ∈ K, n ≥ 0, we compute, for i = 1, · · · ,m, the local

corrections wn+1
i ∈ Vi, u

n+i−1
m + wn+1

i ∈ K satisfying

〈F ′(un+
i−1
m + wn+1

i ), vi − wn+1
i 〉 + ϕ(un+

i−1
m + wn+1

i , un+
i−1
m + vi)

−ϕ(un+
i−1
m + wn+1

i , un+
i−1
m + wn+1

i ) ≥ 0, ∀ vi ∈ Vi, u
n+i−1

m + vi ∈ K,

and then we update

un+
i
m = un+

i−1
m + wn+1

i .

Algorithm 2 We start with an arbitrary u0 ∈ K and at iteration

n+ 1, having un ∈ K, n ≥ 0, we compute, for i = 1, · · · ,m, the local

corrections wn+1
i ∈ Vi, u

n+i−1
m + wn+1

i ∈ K satisfying

〈F ′(un+
i−1
m + wn+1

i ), vi − wn+1
i 〉 + ϕ(un+

i−1
m , un+

i−1
m + vi)

−ϕ(un+
i−1
m , un+

i−1
m + wn+1

i ) ≥ 0, ∀ vi ∈ Vi, u
n+i−1

m + vi ∈ K,



and then we update

un+
i
m = un+

i−1
m + wn+1

i .

Theorem 5 Let us assume that Assumptions 1 and 2 are satisfied.

Then, if u is the solution of problem (49), un+
i
m, n ≥ 0, i = 1, . . . ,m,

are its approximations obtained from one of Algorithms 1 or 2 and

α

2
≥ mk1k2 +

√

2m(25C0 + 8)βk1k2, (50)

then we have the following error estimations

F (un) + ϕ(u, un) − F (u) − ϕ(u, u) ≤
(

C1
C1+1

)n [

F (u0) + ϕ(u, u0) − F (u) − ϕ(u, u)
]

,
(51)

‖un − u‖2 ≤ 2
α

(

C1
C1+1

)n
·

[

F (u0) + ϕ(u, u0) − F (u) − ϕ(u, u)
]

,
(52)

where the constant C1 > 0 depends on α, β, k1, k2, the number of

subspaces m, and on the constant C0 introduced in Assumption 1.



In the case of Algorithm 1, the constant C1 can be written as,

C1 = C2/C3

C2 = βm(1 + 2C0 + C0
ε1

) + k1k2m(1 + 2C0 + 1+3C0
ε2

)

C3 = α
2 − k1k2(1 + ε3)m

(53)

where

ε1 = ε2 =
2k1k2m

α
2 − k1k2m

, ε3 =
α
2 − k1k2m

2k1k2m
,

Algorithms 1 and 2 can be viewed as multiplicative Schwarz method

if the solution space is a Sobolev space and subspaces are associated

to the subsets in a domain decomposition Ω =
⋃m
i=1 Ωi. If the convex

set K has the property

Property 1 If v, w ∈ K, and if θ ∈ C0(Ω), θ ∈ C1(Ωi), i = 1, . . . ,m,

with 0 ≤ θ ≤ 1, then θv+ (1 − θ)w ∈ K,

then Assumption 1 is satisfied with a C0 depending on 1/δ, the over-

lapping parameter of the domain decomposition. The convex set Kι+1

has the above property.



Since f ι+1 and uι are fixed in problem (Qιν), taking

ψ(u, v) = j(f ι+1, u, v − uι) (54)

this functional has the properties of ϕ in problem (49), i.e. it is lower

semicontinuous and convex in the second variable, and satisfies (47)

but does not satisfy Assumption 2.

The one- and two-level methods are directly obtained from Algorithms

1 or 2. We can prove that Assumption 1 holds for closed convex sets

Kh satisfying a similar property with that given in Property 1, and

also for the discretized form of Kι+1. We are able to explicitly write

the dependence of C0 on the overlapping and mesh parameters. Also,

we can give some numerical approximations ϕ of the functional j for

which Assumption 2 holds. Therefore, from Theorem 5, we conclude

that these methods globally converge for the discrete form of (Qιν) if

conditions (1) and (2) on F , and condition (10) on j hold. Moreover,

from the dependence of C0 on the mesh and domain decomposition

parameters, we conclude that the convergence rate is optimal, i.e. it

is similar with that of linear equations.



4. Applications to contact mechanics

 3

u=0
ψ

Γ

Ω
φ

Γ 2Γ 1

We consider a linearly elastic body which occupies the domain Ω of

Rd, d = 2 or 3, such that the solid is initially in contact with nonlocal

bounded friction on Γ3.

We assume that ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 and meas(Γ1) > 0.



Let

u = (u1, ..., ud) be the displacement field,

ε =
(

εij (u)
)

be the infinitesimal strain tensor,

σ =
(

σij (u)
)

be the stress tensor,

E be the elasticity tensor, with the components E = (aijkl),

φ and ψ be the given body forces and tractions.

On Γ1 u = 0 and in Ω the initial displacements are denoted by u0.

We use the classical decompositions into the normal and tangential

components of the displacement vector and stress vector u = uNn+uT
with uN = u · n, σn = σNn+ σT with σN = (σn) · n, where n is the

outward normal unit vector to Γ with the components n = (ni).



The classical formulation of the quasistatic problem is as follows.

Problem Pc: Find a displacement field u = u(x, t) which satisfies the

initial condition u(0) = u0 in Ω and for all t ∈] 0, T [, the following

equations and boundary conditions:

(Pc)
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
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





div σ(u) = −φ in Ω,

σ(u) = E ε(u) in Ω,

u = 0 on Γ1,

σn = ψ on Γ2,

uN ≤ 0, σN ≤ 0, uNσN = 0 on Γ3,

|σT | ≤ µ|RσN | on Γ3

and

{

|σT | < µ|RσN | ⇒ u̇T = 0,

|σT | = µ|RσN | ⇒ ∃λ ≥ 0, u̇T = −λσT ,

where µ is the coefficient of friction and RσN is a regularization of the

normal contact force.



In order to obtain a variational formulation for this problem, we adopt

the following hypotheses:

φ ∈W1,2(0, T ; [L2(Ω)]d), ψ ∈W1,2(0, T ; [L2(Γ2)]
d),

aijkl ∈ L∞(Ω), i, j, k, l = 1, ..., d, µ ∈ L∞(Γ3), µ ≥ 0 a.e. on Γ3.

We use the following notations:

V0 := {v ∈ [H1(Ω)]d ; v = 0 a.e. on Γ1}, (· , ·) = (· , ·)[H1(Ω)]d,

K0 := {v ∈ V0 ; vN ≤ 0 a.e. on Γ3},

H
1
2(Γ3) := {w : Γ3 → R; w ∈ H

1
2(Γ), w = 0 a.e. onΓ1},

∀L ∈ V0 SL := {w ∈ V0;
∫

Ω
σ(w) · ε(η)dx = (L,η) ∀η ∈ V0 such

that η = 0 a.e. on Γ3}.

For all L ∈ V0 and v ∈ SL we define σ(v)n ∈ ([H
1
2(Γ3)]

d)′ by

∀w ∈ [H
1
2(Γ3)]

d 〈σ(v)n,w〉 =
∫

Ω
σ(v) · ε(w̄)dx− (L, w̄), (55)

where w̄ ∈ V0 satisfies w̄ = w a.e. on Γ3, and we define the normal



component of the stress vector σN(v) ∈ (H
1
2(Γ3))

′ by

∀w ∈ H
1
2(Γ3) 〈σN(v), w〉 =

∫

Ω
σ(v) · ε(w̄)dx− (L, w̄), (56)

where w̄ ∈ V0 satisfies w̄T = 0 a.e. on Γ3, w̄N = w a.e. on Γ3.

For all L ∈ V0 we introduce the functional JL : SL × V0 → R by

JL(v,w) =
∫

Γ3

µ|RσN(v)||wT |ds ∀ v ∈ SL, w ∈ V0, (57)

where R : (H
1
2(Γ3))

′ → L2(Γ3) is a linear and compact mapping.

Let L ∈ V0 be given by the relation

(L, v) = (φ, v)[L2(Ω)]d + (ψ, v)[L2(Γ2)]
d ∀ v ∈ V0 (58)

and let u0 ∈ K0 satisfying the following compatibility condition:
∫

Ω
σ(u0) · ε(w − u0)dx+ JL(0)(u0,w) − JL(0)(u0,u0)

≥ (L(0),w − u0) ∀w ∈ K0.
(59)



A primal variational formulation of Pc is as follows.

Problem P0: Find u ∈W1,2(0, T ;V0) such that

(P0)


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
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u(0) = u0, u(t) ∈ K0 ∀ t ∈] 0, T [,
∫

Ω
σ(u(t)) · ε(v − u̇(t))dx+ JL(t)(u(t), v) − JL(t)(u(t), u̇(t))

≥ (L(t), v − u̇(t)) + 〈σN(u(t)), vN − u̇N(t)〉 ∀ v ∈ V0 a.e. on ] 0, T [,

〈σN(u(t)), zN − uN(t)〉 ≥ 0 ∀ z ∈ K0, ∀ t ∈] 0, T [.

Let us define a : V0 × V0 → R by

a(v,w) =
∫

Ω
aijklεij(v)εkl(w)dx =

∫

Ω
σ(v) · ε(w)dx ∀ v,w ∈ V0. (60)

The bilinear form a(· , ·) satisfies

∃β > 0 such that |a(v,w)| ≤ β‖v‖‖w‖ ∀ v,w ∈ V0,

∃α > 0 such that a(v,v) ≥ α‖v‖2 ∀ v ∈ V0,

where ‖ · ‖ = ‖ · ‖[H1(Ω)]d.



Let G1, G2 ∈ V0 and v1,v2 be such that v1 ∈ SG1
, v2 ∈ SG2

. Then
from the properties of σN , R and a it follows that the mapping J has
the following property: ∃C,C′ > 0 such that

|JG1
(v1,w2) + JG2

(v2,w1) − JG1
(v1,w1) − JG2

(v2,w2)|

≤ Cµ̄
∫

Γ3

|RσN(v1) −RσN(v2)||w1 −w2|ds

≤ C′µ̄(‖G1 −G2‖ +M‖v1 − v2‖)‖w1 −w2‖

(61)

for all Gi, wi ∈ V0, vi ∈ SGi
, i = 1,2, where µ̄ = ‖µ‖L∞(Γ3)

.

An incremental formulation can be written by using a time discretiza-
tion of (P0) as previously. Therefore we obtain the following sequence
of incremental problems (P ι0,ν)ι=0,1,...,ν.

Problem Pι
0,ν: Find uι+1 ∈ K0 such that

(P ι0,ν)


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


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



a(uι+1,v − ∂uι) + J
Lι+1(u

ι+1, v) − J
Lι+1(u

ι+1, ∂uι)

≥ (Lι+1, v − ∂uι) + 〈σN(uι+1), vN − ∂uιN〉 ∀ v ∈ V0,

〈σN(uι+1), zN − uι+1
N 〉 ≥ 0 ∀ z ∈ K0.



Then uν ∈ L2(0, T ;V0) and

ûν ∈W1,2(0, T ;V0) satisfy the following incremental problem:

(P0,ν)
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

a(uν(t), v −
d

dt
ûν(t)) + JLν(t)(uν(t), v)

−JLν(t)(uν(t),
d

dt
ûν(t)) ≥ (Lν(t), v −

d

dt
ûν(t))

+〈σN(uν(t)), vN −
d

dt
ûνN(t)〉 ∀ v ∈ V0, ∀ t ∈ [ 0, T ],

〈σN(uν(t)), zN − uνN(t)〉 ≥ 0 ∀ z ∈ K0, ∀ t ∈ [ 0, T ].

We have the following existence and approximation result.

Theorem 6 Under the above assumptions and if µ̄ <
α

C′
there exists

a subsequence (uνp)p of (uν)ν such that uνp(t) → u(t) in V0 ∀ t ∈

[ 0, T ], ûνp → u in L2(0, T ;V0) and
d

dt
ûνp ⇀ u̇ in L2(0, T ;V0), as

p→ ∞, where u is a solution of (P0).



Proof.

Taking V = V0, K = K0, H = L2(Γ3) and

j(L,v,w) = JL(v,w) − (L,w), b(L,v,w) = 〈σN(v), wN〉,

K(L) = K0 ∩ SL, β(L,v) = µ|RσN(v)| ∀ v ∈ SL, w ∈ V0,

we see that (P0) can be written in the form (P ) with f = L, where L

is defined by (58). Using the properties of J and Green’s formula, it

can be easily seen that the hypotheses of theorem 1 are satisfied and

the theorem therefore follows. �

- Using a similar approach, one can study the quasistatic unilateral con-

tact problem with nonlocal friction between two linearly elastic bodies.

- The previous abstract results can be equally applied to frictional con-

tact with normal compliance, to bilateral contact problems or, more

generally, to contact interface problems.



Perspectives

• Generalizations to: viscoelasticity, monotone operators,...

• Study of the local friction laws

• Study of the corresponding dynamic cases,...


