Analyse d'une classe d'inéquations d'évolution implicites et applications à des problèmes quasi-statiques de contact

> Marius Cocou
> LMA CNRS et Université de Provence Marseille

Lori Badea
Institut de Mathématiques de l'Académie Roumaine Bucarest

Laboratoire Européen Associé CNRS Math - Mode

10ème Colloque Franco-Roumain de Mathématiques Appliquées, 26-31 Août 2010, Poitiers

Outline

Introduction

1. Analysis of a system of implicit variational inequalities
2. Internal approximation and convergence analysis
3. Subspace correction approximation
4. Applications to contact mechanics

Perspectives

- Nonlocal friction law in the static case - G. Duvaut, J.T. Oden and co-workers (1983)
- J. Martins, J. T. Oden $(1985,1987)$ proposed and studied normal compliance laws
- Nonlocal friction law in the quasistatic case - M. Cocou, E. Pratt, M. Raous $(1995,1996)$
- Numerical analysis of variational inequalities - R. Glowinski, J.L. Lions, R. Trémolières (1976)
- Numerical analysis of static contact problems - A. Capatina, M. Cocou (1991)
- Numerical analysis of quasistatic contact problems - A. Capatina, M. Cocou, M. Raous (2009)
- W. Han and M. Sofonea (2002) studied contact problems for (visco)elastic and elastic-viscoplastic bodies
- Schwarz methods for elliptic variational and quasivariational inequalities - L. Badea and co-workers (2003, 2006, 2008)

1. Analysis of a system of implicit variational inequalities

Let $(V,\langle.,\rangle,.\|\cdot\|)$, and $\left(H,(\cdot, \cdot)_{H},\|\cdot\|_{H}\right)$ be two real Hilbert. Let F : $V \times V \rightarrow \mathbb{R}$ be a Gâteaux differentiable functional on V and assume that there exist two constants $\alpha, \beta>0$ for which

$$
\begin{equation*}
\alpha\|v-u\|^{2} \leq\left\langle F^{\prime}(v)-F^{\prime}(u), v-u\right\rangle \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|F^{\prime}(v)-F^{\prime}(u)\right\|_{V^{\prime}} \leq \beta\|v-u\| \tag{2}
\end{equation*}
$$

for all $u, v \in V$, where F^{\prime} is the Gâteaux derivative of F. Let K be a closed convex cone contained in V with its vertex at 0 and let $(K(g))_{g \in V}$ be a family of nonempty closed convex subsets of K satisfying the following conditions: $0 \in K(0)$ and

$$
\begin{equation*}
\text { if } g_{n} \rightarrow g \text { in } V, v_{n} \in K\left(g_{n}\right) \text { and } v_{n} \rightharpoonup v \text { in } V \text { then } v \in K(g) . \tag{3}
\end{equation*}
$$

We assume that for all $g \in V$ there exists an operator $\gamma(g, \cdot): K(g) \rightarrow H$ such that $\gamma(0,0)=0$,

$$
\begin{align*}
& \text { if } g_{n} \rightarrow g \text { in } V, v_{n} \in K\left(g_{n}\right) \text { and } v_{n} \rightharpoonup v \text { in } V \tag{4}\\
& \text { then } \gamma\left(g_{n}, v_{n}\right) \rightarrow \gamma(g, v) \text { in } H
\end{align*}
$$

and for all $g_{i} \in V, v_{i} \in K\left(g_{i}\right), i=1,2$,

$$
\begin{equation*}
\left\|\gamma\left(g_{1}, v_{1}\right)-\gamma\left(g_{2}, v_{2}\right)\right\|_{H} \leq k_{1}\left(\left\|g_{1}-g_{2}\right\|+\left\|v_{1}-v_{2}\right\|\right) \tag{5}
\end{equation*}
$$

$j(g, v, \cdot)$ is sequentially weakly continuous on $V \quad \forall g \in V, v \in K(g)$,
$j(g, v, \cdot)$ is sub-additive for all $g \in V, v \in K(g)$, that is

$$
\begin{equation*}
j\left(g, v, w_{1}+w_{2}\right) \leq j\left(g, v, w_{1}\right)+j\left(g, v, w_{2}\right) \quad \forall g, w_{1,2} \in V, v \in K(g) \tag{7}
\end{equation*}
$$

$j(g, v, \cdot)$ is positively homogeneous for all $g \in V, v \in K(g)$,
that is $j(g, v, \theta w)=\theta j(g, v, w) \quad \forall g, w \in V, v \in K(g), \theta \geq 0$,

$$
\begin{equation*}
j(0,0, w)=0 \quad \forall w \in V \tag{9}
\end{equation*}
$$

and there exists $k_{2}>0$ such that

$$
\begin{align*}
& \left|j\left(g_{1}, v_{1}, w_{2}\right)+j\left(g_{2}, v_{2}, w_{1}\right)-j\left(g_{1}, v_{1}, w_{1}\right)-j\left(g_{2}, v_{2}, w_{2}\right)\right| \\
& \leq k_{2}\left(\left\|g_{1}-g_{2}\right\|+\left\|\gamma\left(g_{1}, v_{1}\right)-\gamma\left(g_{2}, v_{2}\right)\right\|_{H}\right)\left\|w_{1}-w_{2}\right\| \tag{10}\\
& \quad \forall g_{i}, w_{i} \in V, v_{i} \in K\left(g_{i}\right), i=1,2 .
\end{align*}
$$

We assume that k_{1} and k_{2} satisfy the following condition:

$$
\begin{equation*}
k_{1} k_{2}<\alpha \tag{11}
\end{equation*}
$$

For all $g \in V$, we consider a functional $b(g, \cdot, \cdot): K(g) \times V \rightarrow \mathbb{R}$ which satisfies the following conditions:

$$
\begin{equation*}
\forall g \in V, v \in K(g), b(g, v, \cdot) \text { is linear and continuous on } V \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
& \left|b\left(g_{1}, v_{1}, w\right)-b\left(g_{2}, v_{2}, w\right)\right| \leq k_{b}\left(\left\|g_{1}-g_{2}\right\|\right. \tag{13}\\
& \left.\quad+\left\|v_{1}-v_{2}\right\|\right)\|w\| \quad \forall g_{i}, w \in V, v_{i} \in K\left(g_{i}\right), i=1,2
\end{align*}
$$

Let $f \in W^{1,2}(0, T ; V)$ be given and $u_{0} \in K(f(0))$ be the unique solution of the following implicit elliptic variational inequality:

$$
\begin{equation*}
\left\langle F^{\prime}\left(u_{0}\right), w-u_{0}\right\rangle+j\left(f(0), u_{0}, w\right)-j\left(f(0), u_{0}, u_{0}\right) \geq 0 \quad \forall w \in K \tag{14}
\end{equation*}
$$

We consider the following evolution system of coupled variational inequalities.

Problem P: Find $u \in W^{1,2}(0, T ; V)$ such that

$$
\left\{\begin{array}{l}
\left.u(0)=u_{0}, u(t) \in K(f(t)) \quad \forall t \in\right] 0, T[\tag{P}\\
\left\langle F^{\prime}(u(t)), v-\dot{u}(t)\right\rangle+j(f(t), u(t), v)-j(f(t), u(t), \dot{u}(t)) \\
\quad \geq b(f(t), u(t), v-\dot{u}(t)) \quad \forall v \in V \text { a.e. on }] 0, T[\\
b(f(t), u(t), w-u(t)) \geq 0 \quad \forall w \in K, \forall t \in] 0, T[
\end{array}\right.
$$

We approximate problem P by using an implicit time discretization scheme. For $\nu \in N^{*}$, we set $\Delta t:=T / \nu, t_{\iota}:=\iota \Delta t$ and $K^{\iota}:=K\left(f\left(t_{\iota}\right)\right)$, $\iota=0,1, \ldots, \nu$. If θ is a continuous function of $t \in[0, T]$ valued in some vector space, we use the notations $\theta^{\iota}:=\theta\left(t_{\iota}\right)$ unless $\theta=u$, and if $\zeta^{\iota}, \forall \iota \in\{0,1, \ldots, \nu\}$, are elements of some vector space, then we set

$$
\partial \zeta^{\iota}:=\frac{\zeta^{\iota+1}-\zeta^{\iota}}{\Delta t} \quad \forall \iota \in\{0,1, \ldots, \nu-1\}
$$

We denote $u^{0}:=u_{0}$ and we approximate (P) using the following sequence of incremental problems $\left(P_{\nu}^{\iota}\right)_{\iota=0,1, \ldots, \nu-1}$.

Problem \mathbf{P}_{ν}^{ι} : Find $u^{\iota+1} \in K^{\iota+1}$ such that

$$
\left(P_{\nu}^{\iota}\right)\left\{\begin{array}{c}
\left\langle F^{\prime}\left(u^{\iota+1}\right), v-\partial u^{\iota}\right\rangle+j\left(f^{\iota+1}, u^{\iota+1}, v\right)-j\left(f^{\iota+1}, u^{\iota+1}, \partial u^{\iota}\right) \\
\geq b\left(f^{\iota+1}, u^{\iota+1}, v-\partial u^{\iota}\right) \quad \forall v \in V \\
b\left(f^{\iota+1}, u^{\iota+1}, w-u^{\iota+1}\right) \geq 0 \quad \forall w \in K
\end{array}\right.
$$

It is easily seen that for all $\iota \in\{0,1, \ldots, \nu-1\}$ the problem P_{ν}^{ι} is equivalent to each of the following variational inequalities: find $u^{\iota+1} \in K^{\iota+1}$ such that

$$
\left(Q_{\nu}^{\iota}\right)\left\{\begin{array}{r}
\left\langle F^{\prime}\left(u^{\iota+1}\right), w-u^{\iota+1}\right\rangle+j\left(f^{\iota+1}, u^{\iota+1}, w-u^{\iota}\right) \\
-j\left(f^{\iota+1}, u^{\iota+1}, u^{\iota+1}-u^{\iota}\right) \geq 0 \quad \forall w \in K
\end{array}\right.
$$

Lemma 1 Let $u^{\iota+1}$ be the solution of $\left(Q_{\nu}^{\iota}\right), \iota \in\{0,1, \ldots, \nu-1\}$. Then

$$
\begin{equation*}
\left\|u^{0}\right\| \leq M_{0}\left\|F^{\prime}(0)\right\|+M_{1}\left\|f^{0}\right\|, \quad\left\|u^{\iota+1}\right\| \leq M_{0}\left\|F^{\prime}(0)\right\|+M_{1}\left\|f^{\iota+1}\right\| \tag{15}
\end{equation*}
$$

$$
\begin{gather*}
\left\|u^{i+1}-u^{i}\right\| \leq M_{1}\left\|f^{\iota+1}-f^{\iota}\right\| \tag{16}\\
\sum_{\iota=0}^{\nu-1}\left\|u^{i+1}-u^{i}\right\|^{2} \leq M_{1}^{2} \Delta t \int_{0}^{T}\|\dot{f}(\tau)\|^{2} d \tau \tag{17}
\end{gather*}
$$

where

$$
\begin{equation*}
M_{0}=\frac{1}{\alpha-k_{1} k_{2}}, \quad M_{1}=\frac{\left(k_{1}+1\right) k_{2}}{\alpha-k_{1} k_{2}} \tag{18}
\end{equation*}
$$

Now, if we define

$$
\left\{\begin{array}{l}
u_{\nu}(0)=\widehat{u}_{\nu}(0)=u^{0}, f_{\nu}(0)=f^{0} \text { and } \\
\left.\forall \iota \in\{0,1, \ldots, \nu-1\}, \forall t \in] t_{\iota}, t_{\iota+1}\right] \\
u_{\nu}(t)=u^{\iota+1}, \widehat{u}_{\nu}(t)=u^{\iota}+\left(t-t_{\iota}\right) \partial u^{\iota}, f_{\nu}(t)=f^{\iota+1}
\end{array}\right.
$$

then for all $\nu \in N^{*}$ the sequence of inequalities $\left(P_{\nu}^{\iota}\right)_{\iota=0,1, \ldots, \nu-1}$ is equivalent to the following incremental formulation: for almost every $t \in[0, T]$
$\left.P_{\nu}\right)\left\{\begin{array}{l}u_{\nu}(t) \in K\left(f_{\nu}(t)\right),\left\langle F^{\prime}\left(u_{\nu}(t)\right), v-\frac{d}{d t} \widehat{u}_{\nu}(t)\right\rangle+j\left(f_{\nu}(t), u_{\nu}(t), v\right)\end{array}\right.$
$\left(P_{\nu}\right)\left\{\quad-j\left(f_{\nu}(t), u_{\nu}(t), \frac{d}{d t} \widehat{u}_{\nu}(t)\right) \geq b\left(f_{\nu}(t), u_{\nu}(t), v-\frac{d}{d t} \widehat{u}_{\nu}(t)\right) \quad \forall v \in V\right.$, $b\left(f_{\nu}(t), u_{\nu}(t), w-u_{\nu}(t)\right) \geq 0 \quad \forall w \in K$.

Also, the sequence $\left(Q_{\nu}^{\iota}\right)_{\iota=0,1, \ldots, \nu-1}$ implies the following inequality: for almost every $t \in[0, T]$

$$
\left(R_{\nu}\right) \quad\left\langle F^{\prime}\left(u_{\nu}(t)\right), w-u_{\nu}(t)\right\rangle+j\left(f_{\nu}(t), u_{\nu}(t), w-u_{\nu}(t)\right) \geq 0 \quad \forall w \in K
$$

which is clearly equivalent to the following inequality: for almost every $t \in[0, T]$
$\left(\widehat{R}_{\nu}\right) \quad F(w)-F\left(u_{\nu}(t)\right)+j\left(f_{\nu}(t), u_{\nu}(t), w-u_{\nu}(t)\right) \geq \frac{\alpha}{2}\left\|w-u_{\nu}(t)\right\|^{2} \quad \forall w \in K$.

Lemma 2 There exist a subsequence of $\left(u_{\nu}, \widehat{u}_{\nu}\right)_{\nu}$, denoted by $\left(u_{\nu_{p}}, \widehat{u}_{\nu_{p}}\right)_{p}$, and an element $u \in W^{1,2}(0, T ; V)$ such that

$$
\begin{gather*}
u_{\nu_{p}}(t) \rightharpoonup u(t) \quad \text { in } \quad V \quad \forall t \in[0, T], \tag{19}\\
\widehat{u}_{\nu_{p}} \rightharpoonup u \quad \text { in } \quad W^{1,2}(0, T ; V), \tag{20}\\
\frac{d}{d t} \widehat{u}_{\nu_{p}} \rightharpoonup \dot{u} \quad \text { in } \quad L^{2}(0, T ; V) . \tag{21}
\end{gather*}
$$

Also, for all $s \in[0, T]$, we have $u(s) \in K(f(s))$ and

$$
\begin{equation*}
\liminf _{p \rightarrow \infty} \int_{0}^{s} j\left(f_{\nu_{p}}(t), u_{\nu_{p}}(t), \frac{d}{d t} \widehat{u}_{\nu_{p}}(t)\right) d t \geq \int_{0}^{s} j(f(t), u(t), \dot{u}(t)) d t \tag{22}
\end{equation*}
$$

We can prove the following strong convergence and existence result.

Theorem 1 Under the assumptions (1)-(14) every convergent subsequence of $\left(u_{\nu}, \widehat{u}_{\nu}\right)_{\nu}$, still denoted by $\left(u_{\nu}, \widehat{u}_{\nu}\right)_{\nu}$, and its limit $u \in$ $W^{1,2}(0, T ; V)$, given by lemma 2 , satisfy the following properties:

$$
\begin{gather*}
u_{\nu}(t) \rightarrow u(t) \quad \text { in } \quad V \quad \forall t \in[0, T], \tag{23}\\
\widehat{u}_{\nu} \rightarrow u \quad \text { in } \quad L^{2}(0, T ; V) \tag{24}
\end{gather*}
$$

and u is a solution of problem P.

2. Internal approximation and convergence analysis

We prove a convergence result for a method based on an internal approximation and a backward difference scheme.
First, we consider a semi-discrete approximation of (P), which extends some classical internal approximations. Let $\left(V_{h}\right)_{h}$ be an internal approximation of V, that is a family of finite-dimensional subspaces of V which satisfies:

$$
\begin{align*}
& \text { there exist } U \subset V \text { such that } \bar{U}=V \text { and } \\
& \forall v \in U, \exists v_{h} \in V_{h} \text { for each } h, \text { such that } v_{h} \rightarrow v \text { in } V . \tag{25}
\end{align*}
$$

Let $\left(K_{h}\right)_{h}$ be a family of closed convex cones with their vertices at 0 such that $K_{h} \subset V_{h}$ for all h and $\left(K_{h}\right)_{h}$ is an internal approximation of K, i.e.

$$
\begin{array}{r}
\text { if } v_{h} \in K_{h} \text { for all } h \text { and } v_{h} \rightharpoonup v \text { then } v \in K, \\
\forall v \in K, \exists v_{h} \in K_{h} \text { for each } h, \text { such that } v_{h} \rightarrow v \text { in } V . \tag{27}
\end{array}
$$

Let $\left(K_{h}(g)\right)_{g \in V}$ be a family of nonempty closed convex subsets of K_{h} such that $0 \in K_{h}(0)$ for all h, satisfying the following conditions:

$$
\begin{align*}
& \text { if } g_{n} \rightarrow g \text { in } V, v_{h n} \in K_{h}\left(g_{n}\right) \text { and } v_{h n} \rightarrow v_{h} \text { in } V_{h} \text { then } v_{h} \in K_{h}(g), \tag{28}\\
& \text { if } v_{h} \in K_{h}(g) \text { for all } h \text { and } v_{h} \rightharpoonup v \text { then } v \in K(g) \forall g \in V \text {. } \tag{29}
\end{align*}
$$

We assume that for all $g \in V$ there exists an operator $\gamma_{h}(g, \cdot): K_{h}(g) \rightarrow$ H such that $\gamma_{h}(0,0)=0$ and for all $g_{i} \in V, v_{h i} \in K_{h}\left(g_{i}\right), i=1,2$,

$$
\begin{equation*}
\left\|\gamma_{h}\left(g_{1}, v_{h 1}\right)-\gamma_{h}\left(g_{2}, v_{h 2}\right)\right\|_{H} \leq k_{1}\left(\left\|g_{1}-g_{2}\right\|+\left\|v_{h 1}-v_{h 2}\right\|\right) \tag{30}
\end{equation*}
$$

For all $g \in V$, let $j_{h}(g, \cdot, \cdot): K_{h}(g) \times V_{h} \rightarrow \mathbb{R}$ be a functional satisfying the following conditions for all $g \in V$:

$$
\begin{align*}
& \text { if } v_{h} \in K_{h}(g) \text { for all } h, v_{h} \rightharpoonup v \text { in } V \text { and } w_{h} \rightharpoonup w \text { in } V \\
& \text { then } \lim _{h \rightarrow 0} j_{h}\left(g, v_{h}, w_{h}\right)=j(g, v, w) \tag{31}
\end{align*}
$$

for all h and $v_{h} \in K_{h}(g) \quad j_{h}\left(g, v_{h}, \cdot\right)$ is sub-additive,
for all h and $v_{h} \in K_{h}(g) \quad j_{h}\left(g, v_{h}, \cdot\right)$ is positively homogeneous,

$$
\begin{equation*}
j_{h}\left(0,0, w_{h}\right)=0 \quad \forall w_{h} \in V_{h} \tag{33}
\end{equation*}
$$

and

$$
\text { if } v_{h}(t) \in K_{h}(g(t)) \text { for all } h \text { and } t \in[0, T], v_{h} \rightharpoonup v \text { in } W^{1,2}(0, T ; V)
$$

$$
\begin{align*}
& \text { then } \liminf _{h \rightarrow 0} \int_{0}^{T} j_{h}\left(g(t), v_{h}(t), \dot{v}_{h}(t)\right) d t \geq \int_{0}^{T} j(g(t), v(t), \dot{v}(t)) d t \\
& \text { for all } g \in C([0, T] ; V) \\
& \left|j_{h}\left(g_{1}, v_{h 1}, w_{h 2}\right)+j_{h}\left(g_{2}, v_{h 2}, w_{h 1}\right)-j_{h}\left(g_{1}, v_{h 1}, w_{h 1}\right)-j_{h}\left(g_{2}, v_{h 2}, w_{h 2}\right)\right| \\
& \leq k_{2}\left(\left\|g_{1}-g_{2}\right\|+\left\|\gamma_{h}\left(g_{1}, v_{h 1}\right)-\gamma_{h}\left(g_{2}, v_{h 2}\right)\right\|_{H}\right)\left\|w_{h 1}-w_{h 2}\right\| \tag{36}\\
& \forall g_{i} \in V, v_{h i} \in K_{h}\left(g_{i}\right), w_{h i} \in V_{h}, i=1,2 .
\end{align*}
$$

Now we consider the following semi-discrete problem.

Problem P_{h} : Find $u_{h} \in W^{1,2}\left(0, T ; V_{h}\right)$ such that

$$
\left(P_{h}\right)\left\{\begin{array}{l}
\left.u_{h}(0)=u_{0 h}, u_{h}(t) \in K_{h}(f(t)) \quad \forall t \in\right] 0, T[\\
\left\langle F^{\prime}\left(u_{h}(t)\right), v_{h}-\dot{u}_{h}(t)\right\rangle+j_{h}\left(f(t), u_{h}(t), v_{h}\right)-j_{h}\left(f(t), u_{h}(t), \dot{u}_{h}(t)\right) \tag{h}\\
\left.\geq b\left(f(t), u_{h}(t), v_{h}-\dot{u}_{h}(t)\right) \quad \forall v_{h} \in V_{h} \text { a.e. on }\right] 0, T[, \\
\left.b\left(f(t), u_{h}(t), z_{h}-u_{h}(t)\right) \geq 0 \quad \forall z_{h} \in K_{h}, \quad \forall t \in\right] 0, T[,
\end{array}\right.
$$

The full discretization of $\left(P_{h}\right)$ is obtained by using an implicit scheme as in Section 2 for (P). For $u_{h}^{0}:=u_{0 h}$ and $\iota \in\{0,1, \ldots, \nu-1\}$, we define $u_{h}^{\iota+1}$ as the solution of the following problem.

Problem $\mathbf{P}_{\mathrm{h} \nu}^{\iota}$: Find $u_{h}^{\iota+1} \in K_{h}^{\iota+1}$ such that

$$
\left(P_{h \nu}^{\iota}\right)\left\{\begin{array}{c}
\left\langle F^{\prime}\left(u_{h}^{\iota+1}\right), v_{h}-\partial u_{h}^{\iota}\right\rangle+j_{h}\left(f^{\iota+1}, u_{h}^{\iota+1}, v_{h}\right)-j_{h}\left(f^{\iota+1}, u_{h}^{\iota+1}, \partial u_{h}^{\iota}\right) \\
\geq b\left(f^{\iota+1}, u_{h}^{\iota+1}, v_{h}-\partial u_{h}^{\iota}\right) \quad \forall v_{h} \in V_{h} \\
b\left(f^{\iota+1}, u_{h}^{\iota+1}, z_{h}-u_{h}^{\iota+1}\right) \geq 0 \quad \forall z_{h} \in K_{h}
\end{array}\right.
$$

where $K_{h}^{\iota+1}:=K_{h}\left(f^{\iota+1}\right)$.

If we define the functions

$$
\left\{\begin{array}{l}
u_{h \nu}(0)=\widehat{u}_{h \nu}(0)=u_{0 h} \quad \text { and } \\
\left.\forall \iota \in\{0,1, \ldots, \nu-1\}, \quad \forall t \in] t_{\iota}, t_{\iota+1}\right] \\
u_{h \nu}(t)=u_{h}^{\iota+1} \\
\widehat{u}_{h \nu}(t)=u_{h}^{\iota}+\left(t-t_{\iota}\right) \partial u_{h}^{\iota}
\end{array}\right.
$$

then for all $\nu \in N^{*}$ the sequence of inequalities $\left(P_{\nu}^{h \iota}\right)_{\iota=0,1, \ldots, \nu-1}$ is equivalent to the following incremental formulation:
for almost every $t \in[0, T]$
$\left(P_{h \nu}\right)\left\{\begin{array}{l}u_{h \nu}(t) \in K_{h}\left(f_{\nu}(t)\right),\left\langle F^{\prime}\left(u_{h \nu}(t)\right), v_{h}-\frac{d}{d t} \widehat{u}_{h \nu}(t)\right\rangle+j_{h}\left(f_{\nu}(t), u_{h \nu}(t), v_{h}\right) \\ -j_{h}\left(f_{\nu}(t), u_{h \nu}(t), \frac{d}{d t} \widehat{u}_{h \nu}(t)\right) \geq b\left(f_{\nu}(t), u_{h \nu}(t), v_{h}-\frac{d}{d t} \widehat{u}_{h \nu}(t)\right) \forall v_{h} \in V_{h}, \\ b\left(f_{\nu}(t), u_{h \nu}(t), w_{h}-u_{h \nu}(t)\right) \geq 0 \quad \forall w_{h} \in K_{h} .\end{array}\right.$
We have the analogue to theorem 1 in the finite dimensional case.

Theorem 2 Assume that (1), (2), (12), (13), (28), (30), (32)-(34), (36) hold. Then there exists a subsequence of $\left(u_{h \nu}, \hat{u}_{h \nu}\right)_{\nu}$, still denoted by $\left(u_{h \nu}, \widehat{u}_{h \nu}\right)_{\nu}$, such that

$$
\begin{align*}
u_{h \nu}(t) & \rightarrow u_{h}(t) \quad \text { in } \quad V \quad \forall t \in[0, T], \tag{37}\\
\widehat{u}_{h \nu} & \rightarrow u_{h} \quad \text { in } \quad L^{2}(0, T ; V), \tag{38}
\end{align*}
$$

where u_{h} is a solution of $\left(P_{h}\right)$.

Theorem 3 Under the assumptions (1)-(14), (25)-(36) there exists a subsequence of $\left(u_{h}\right)_{h}$ such that

$$
\begin{align*}
u_{h}(t) \rightarrow u(t) & \text { in } \quad V \quad \forall t \in[0, T], \tag{39}\\
u_{h} \rightarrow u \quad & \text { in } \quad L^{2}(0, T ; V), \tag{40}\\
\dot{u}_{h} \rightharpoonup \dot{u} \quad & \text { in } \quad L^{2}(0, T ; V), \tag{41}
\end{align*}
$$

where u is a solution of (P).

Theorem 4 Under the assumptions of theorem 3, there exists a subsequence of $\left(u_{h \nu}\right)_{h \nu}$ such that

$$
\begin{gather*}
u_{h \nu}(t) \rightarrow u(t) \quad \text { in } \quad V \quad \forall t \in[0, T], \tag{42}\\
\dot{u}_{h \nu} \rightharpoonup \dot{u} \quad \text { in } \quad L^{2}(0, T ; V), \tag{43}
\end{gather*}
$$

where $u \in W^{1,2}(0, T ; V)$ is a solution of (P).

Furthermore any cluster point of $\left(u_{h \nu}\right)_{h \nu}$ is a solution of (P).

3. Subspace correction approximation

Let V_{1}, \cdots, V_{m} be some closed subspaces of V. We consider a convex subset $\mathcal{K} \subset V$ satisfying the following assumption.

Assumption 1 There exists a constant C_{0} such that for any $w, v \in \mathcal{K}$ and $w_{i} \in V_{i}$ with $w+\sum_{j=1}^{i} w_{j} \in \mathcal{K}, i=1, \cdots, m$, there exist $v_{i} \in V_{i}$, $i=1, \cdots, m$, satisfying

$$
\begin{gather*}
w+\sum_{j=1}^{i-1} w_{j}+v_{i} \in \mathcal{K} \text { for } i=1, \cdots, m \tag{44}\\
v-w=\sum_{i=1}^{m} v_{i}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{m}\left\|v_{i}\right\| \leq C_{0}\left(\|v-w\|+\sum_{i=1}^{m}\left\|w_{i}\right\|\right) \tag{46}
\end{equation*}
$$

Let $\varphi: \mathcal{K} \times \mathcal{K} \rightarrow \mathbb{R}$ be a convex and lower semicontinuous functional with respect to the second variable such that

$$
\begin{align*}
& \left|\varphi\left(v_{1}, w_{2}\right)+\varphi\left(v_{2}, w_{1}\right)-\varphi\left(v_{1}, w_{1}\right)-\varphi\left(v_{2}, w_{2}\right)\right| \\
& \quad \leq k_{1} k_{2}\left\|v_{1}-v_{2}\right\|\left\|w_{1}-w_{2}\right\| \forall v_{1}, v_{2}, w_{1}, w_{2} \in \mathcal{K} \tag{47}
\end{align*}
$$

and suppose that

Assumption 2

$$
\begin{align*}
& \sum_{i=1}^{m}\left[\varphi\left(u, w+\sum_{j=1}^{i-1} w_{j}+v_{i}\right)-\varphi\left(u, w+\sum_{j=1}^{i-1} w_{j}+w_{i}\right)\right] \tag{48}\\
& \quad \leq \varphi(u, v)-\varphi\left(u, w+\sum_{i=1}^{m} w_{i}\right)
\end{align*}
$$

for any $u \in \mathcal{K}$, and for $v, w \in \mathcal{K}$ and $v_{i}, w_{i} \in V_{i}, i=1, \ldots, m$, as in Assumption 1.

We consider the problem of finding $u \in \mathcal{K}$, the solution of the following quasi-variational inequality

$$
\begin{equation*}
\left\langle F^{\prime}(u), v-u\right\rangle+\varphi(u, v)-\varphi(u, u) \geq 0 \quad \forall v \in \mathcal{K} \tag{49}
\end{equation*}
$$

Algorithm 1 We start with an arbitrary $u^{0} \in \mathcal{K}$ and at iteration $n+1$, having $u^{n} \in \mathcal{K}, n \geq 0$, we compute, for $i=1, \cdots, m$, the local corrections $w_{i}^{n+1} \in V_{i}, u^{n+\frac{i-1}{m}}+w_{i}^{n+1} \in \mathcal{K}$ satisfying

$$
\begin{aligned}
& \left\langle F^{\prime}\left(u^{n+\frac{i-1}{m}}+w_{i}^{n+1}\right), v_{i}-w_{i}^{n+1}\right\rangle+\varphi\left(u^{n+\frac{i-1}{m}}+w_{i}^{n+1}, u^{n+\frac{i-1}{m}}+v_{i}\right) \\
& -\varphi\left(u^{n+\frac{i-1}{m}}+w_{i}^{n+1}, u^{n+\frac{i-1}{m}}+w_{i}^{n+1}\right) \geq 0, \forall v_{i} \in V_{i}, u^{n+\frac{i-1}{m}}+v_{i} \in \mathcal{K}
\end{aligned}
$$

and then we update

$$
u^{n+\frac{i}{m}}=u^{n+\frac{i-1}{m}}+w_{i}^{n+1}
$$

Algorithm 2 We start with an arbitrary $u^{0} \in \mathcal{K}$ and at iteration $n+1$, having $u^{n} \in \mathcal{K}, n \geq 0$, we compute, for $i=1, \cdots, m$, the local corrections $w_{i}^{n+1} \in V_{i}, u^{n+\frac{i-1}{m}}+w_{i}^{n+1} \in \mathcal{K}$ satisfying

$$
\begin{aligned}
& \left\langle F^{\prime}\left(u^{n+\frac{i-1}{m}}+w_{i}^{n+1}\right), v_{i}-w_{i}^{n+1}\right\rangle+\varphi\left(u^{n+\frac{i-1}{m}}, u^{n+\frac{i-1}{m}}+v_{i}\right) \\
& \quad-\varphi\left(u^{n+\frac{i-1}{m}}, u^{n+\frac{i-1}{m}}+w_{i}^{n+1}\right) \geq 0, \forall v_{i} \in V_{i}, u^{n+\frac{i-1}{m}}+v_{i} \in \mathcal{K}
\end{aligned}
$$

and then we update

$$
u^{n+\frac{i}{m}}=u^{n+\frac{i-1}{m}}+w_{i}^{n+1}
$$

Theorem 5 Let us assume that Assumptions 1 and 2 are satisfied. Then, if u is the solution of problem (49), $u^{n+\frac{i}{m}}, n \geq 0, i=1, \ldots, m$, are its approximations obtained from one of Algorithms 1 or 2 and

$$
\begin{equation*}
\frac{\alpha}{2} \geq m k_{1} k_{2}+\sqrt{2 m\left(25 C_{0}+8\right) \beta k_{1} k_{2}} \tag{50}
\end{equation*}
$$

then we have the following error estimations

$$
\begin{align*}
& F\left(u^{n}\right)+\varphi\left(u, u^{n}\right)-F(u)-\varphi(u, u) \leq \\
& \left(\frac{C_{1}}{C_{1}+1}\right)^{n}\left[F\left(u^{0}\right)+\varphi\left(u, u^{0}\right)-F(u)-\varphi(u, u)\right] \tag{51}\\
& \quad\left\|u^{n}-u\right\|^{2} \leq \frac{2}{\alpha}\left(\frac{C_{1}}{C_{1}+1}\right)^{n} \\
& \quad\left[F\left(u^{0}\right)+\varphi\left(u, u^{0}\right)-F(u)-\varphi(u, u)\right] \tag{52}
\end{align*}
$$

where the constant $C_{1}>0$ depends on $\alpha, \beta, k_{1}, k_{2}$, the number of subspaces m, and on the constant C_{0} introduced in Assumption 1.

In the case of Algorithm 1 , the constant C_{1} can be written as,

$$
\begin{align*}
& C_{1}=C_{2} / C_{3} \\
& C_{2}=\beta m\left(1+2 C_{0}+\frac{C_{0}}{\varepsilon_{1}}\right)+k_{1} k_{2} m\left(1+2 C_{0}+\frac{1+3 C_{0}}{\varepsilon_{2}}\right) \tag{53}\\
& C_{3}=\frac{\alpha}{2}-k_{1} k_{2}\left(1+\varepsilon_{3}\right) m
\end{align*}
$$

where

$$
\varepsilon_{1}=\varepsilon_{2}=\frac{2 k_{1} k_{2} m}{\frac{\alpha}{2}-k_{1} k_{2} m}, \quad \varepsilon_{3}=\frac{\frac{\alpha}{2}-k_{1} k_{2} m}{2 k_{1} k_{2} m}
$$

Algorithms 1 and 2 can be viewed as multiplicative Schwarz method if the solution space is a Sobolev space and subspaces are associated to the subsets in a domain decomposition $\Omega=\bigcup_{i=1}^{m} \Omega_{i}$. If the convex set \mathcal{K} has the property

Property 1 If $v, w \in \mathcal{K}$, and if $\theta \in C^{0}(\bar{\Omega}), \theta \in C^{1}\left(\Omega_{i}\right), i=1, \ldots, m$, with $0 \leq \theta \leq 1$, then $\theta v+(1-\theta) w \in \mathcal{K}$,
then Assumption 1 is satisfied with a C_{0} depending on $1 / \delta$, the overlapping parameter of the domain decomposition. The convex set $K^{\iota+1}$ has the above property.

Since $f^{\iota+1}$ and u^{ι} are fixed in problem $\left(Q_{\nu}^{\iota}\right)$, taking

$$
\begin{equation*}
\psi(u, v)=j\left(f^{\iota+1}, u, v-u^{\iota}\right) \tag{54}
\end{equation*}
$$

this functional has the properties of φ in problem (49), i.e. it is lower semicontinuous and convex in the second variable, and satisfies (47) but does not satisfy Assumption 2.

The one- and two-level methods are directly obtained from Algorithms 1 or 2 . We can prove that Assumption 1 holds for closed convex sets K_{h} satisfying a similar property with that given in Property 1, and also for the discretized form of $K^{\iota+1}$. We are able to explicitly write the dependence of C_{0} on the overlapping and mesh parameters. Also, we can give some numerical approximations φ of the functional j for which Assumption 2 holds. Therefore, from Theorem 5, we conclude that these methods globally converge for the discrete form of $\left(Q_{\nu}^{\iota}\right)$ if conditions (1) and (2) on F, and condition (10) on j hold. Moreover, from the dependence of C_{0} on the mesh and domain decomposition parameters, we conclude that the convergence rate is optimal, i.e. it is similar with that of linear equations.

4. Applications to contact mechanics

We consider a linearly elastic body which occupies the domain Ω of $\mathbb{R}^{d}, d=2$ or 3 , such that the solid is initially in contact with nonlocal bounded friction on Γ_{3}.
We assume that $\partial \Omega=\bar{\Gamma}_{1} \cup \bar{\Gamma}_{2} \cup \bar{\Gamma}_{3}$ and meas $\left(\Gamma_{1}\right)>0$.

Let
$\boldsymbol{u}=\left(u_{1}, \ldots, u_{d}\right)$ be the displacement field,
$\varepsilon=\left(\varepsilon_{i j}(\boldsymbol{u})\right)$ be the infinitesimal strain tensor,
$\boldsymbol{\sigma}=\left(\sigma_{i j}(\boldsymbol{u})\right)$ be the stress tensor,
\mathcal{E} be the elasticity tensor, with the components $\mathcal{E}=\left(a_{i j k l}\right)$,
ϕ and ψ be the given body forces and tractions.
On $\Gamma_{1} \boldsymbol{u}=\mathbf{0}$ and in Ω the initial displacements are denoted by \boldsymbol{u}_{0}. We use the classical decompositions into the normal and tangential components of the displacement vector and stress vector $\boldsymbol{u}=u_{N} \boldsymbol{n}+\boldsymbol{u}_{T}$ with $u_{N}=\boldsymbol{u} \cdot \boldsymbol{n}, \boldsymbol{\sigma} \boldsymbol{n}=\sigma_{N} \boldsymbol{n}+\boldsymbol{\sigma}_{T}$ with $\sigma_{N}=(\boldsymbol{\sigma} \boldsymbol{n}) \cdot \boldsymbol{n}$, where \boldsymbol{n} is the outward normal unit vector to Γ with the components $n=\left(n_{i}\right)$.

The classical formulation of the quasistatic problem is as follows. Problem $\mathbf{P}_{\mathbf{c}}$: Find a displacement field $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x}, t)$ which satisfies the initial condition $\boldsymbol{u}(0)=\boldsymbol{u}_{0}$ in Ω and for all $\left.t \in\right] 0, T$ [, the following equations and boundary conditions:

$$
\left(P_{c}\right)\left\{\begin{array}{l}
\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})=-\boldsymbol{\phi} \text { in } \Omega \\
\boldsymbol{\sigma}(\boldsymbol{u})=\mathcal{E} \varepsilon(\boldsymbol{u}) \text { in } \Omega \\
\boldsymbol{u}=\mathbf{0} \text { on } \Gamma_{1}, \\
\boldsymbol{\sigma} \boldsymbol{n}=\boldsymbol{\psi} \text { on } \Gamma_{2}, \\
u_{N} \leq 0, \quad \sigma_{N} \leq 0, \quad u_{N} \sigma_{N}=0 \text { on } \Gamma_{3} \\
\left|\boldsymbol{\sigma}_{T}\right| \leq \mu\left|\mathcal{R} \sigma_{N}\right| \text { on } \Gamma_{3} \\
\text { and }\left\{\begin{array}{l}
\left|\boldsymbol{\sigma}_{T}\right|<\mu\left|\mathcal{R} \sigma_{N}\right| \Rightarrow \dot{u}_{T}=0 \\
\left|\boldsymbol{\sigma}_{T}\right|=\mu\left|\mathcal{R} \sigma_{N}\right| \Rightarrow \exists \lambda \geq 0, \dot{u}_{T}=-\lambda \boldsymbol{\sigma}_{T}
\end{array}\right.
\end{array}\right.
$$

where μ is the coefficient of friction and $\mathcal{R} \sigma_{N}$ is a regularization of the normal contact force.

In order to obtain a variational formulation for this problem, we adopt the following hypotheses:

$$
\begin{aligned}
& \phi \in W^{1,2}\left(0, T ;\left[L^{2}(\Omega)\right]^{d}\right), \quad \psi \in W^{1,2}\left(0, T ;\left[L^{2}\left(\Gamma_{2}\right)\right]^{d}\right) \\
& a_{i j k l} \in L^{\infty}(\Omega), i, j, k, l=1, \ldots, d, \mu \in L^{\infty}\left(\Gamma_{3}\right), \mu \geq 0 \text { a.e. on } \Gamma_{3} .
\end{aligned}
$$

We use the following notations:

$$
\begin{aligned}
& V_{0}:=\left\{\boldsymbol{v} \in\left[H^{1}(\Omega)\right]^{d} ; \boldsymbol{v}=0 \text { a.e. on } \Gamma_{1}\right\}, \quad(\cdot, \cdot)=(\cdot, \cdot)_{\left[H^{1}(\Omega)\right]^{d}} \\
& K_{0}:=\left\{\boldsymbol{v} \in V_{0} ; v_{N} \leq 0 \text { a.e. on } \Gamma_{3}\right\}, \\
& H^{\frac{1}{2}}\left(\Gamma_{3}\right):=\left\{w: \Gamma_{3} \rightarrow \mathbb{R} ; w \in H^{\frac{1}{2}}(\Gamma), w=0 \text { a.e. on } \Gamma_{1}\right\}, \\
& \forall \boldsymbol{L} \in V_{0} \quad S_{\boldsymbol{L}}:=\left\{\boldsymbol{w} \in V_{0} ; \int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{w}) \cdot \boldsymbol{\varepsilon}(\boldsymbol{\eta}) d x=(\boldsymbol{L}, \boldsymbol{\eta}) \quad \forall \boldsymbol{\eta} \in V_{0}\right. \text { such } \\
& \text { that } \left.\boldsymbol{\eta}=0 \text { a.e. on } \Gamma_{3}\right\} .
\end{aligned}
$$

For all $\boldsymbol{L} \in V_{0}$ and $\boldsymbol{v} \in S_{\boldsymbol{L}}$ we define $\boldsymbol{\sigma}(\boldsymbol{v}) \boldsymbol{n} \in\left(\left[H^{\frac{1}{2}}\left(\Gamma_{3}\right)\right]^{d}\right)^{\prime}$ by

$$
\begin{equation*}
\forall \boldsymbol{w} \in\left[H^{\frac{1}{2}}\left(\Gamma_{3}\right)\right]^{d} \quad\langle\boldsymbol{\sigma}(\boldsymbol{v}) \boldsymbol{n}, \boldsymbol{w}\rangle=\int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{v}) \cdot \varepsilon(\overline{\boldsymbol{w}}) d x-(\boldsymbol{L}, \overline{\boldsymbol{w}}), \tag{55}
\end{equation*}
$$

where $\overline{\boldsymbol{w}} \in V_{0}$ satisfies $\overline{\boldsymbol{w}}=\boldsymbol{w}$ a.e. on Γ_{3}, and we define the normal
component of the stress vector $\sigma_{N}(\boldsymbol{v}) \in\left(H^{\frac{1}{2}}\left(\Gamma_{3}\right)\right)^{\prime}$ by

$$
\begin{equation*}
\forall w \in H^{\frac{1}{2}}\left(\Gamma_{3}\right) \quad\left\langle\sigma_{N}(\boldsymbol{v}), w\right\rangle=\int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{v}) \cdot \boldsymbol{\varepsilon}(\overline{\boldsymbol{w}}) d x-(\boldsymbol{L}, \overline{\boldsymbol{w}}) \tag{56}
\end{equation*}
$$

where $\overline{\boldsymbol{w}} \in V_{0}$ satisfies $\overline{\boldsymbol{w}}_{T}=\mathbf{0}$ a.e. on $\Gamma_{3}, \overline{\boldsymbol{w}}_{N}=w$ a.e. on Γ_{3}.
For all $\boldsymbol{L} \in V_{0}$ we introduce the functional $J_{\boldsymbol{L}}: S_{\boldsymbol{L}} \times V_{0} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
J_{\boldsymbol{L}}(\boldsymbol{v}, \boldsymbol{w})=\int_{\Gamma_{3}} \mu\left|\mathcal{R} \sigma_{N}(\boldsymbol{v}) \| \boldsymbol{w}_{T}\right| d s \quad \forall \boldsymbol{v} \in S_{\boldsymbol{L}}, \boldsymbol{w} \in V_{0} \tag{57}
\end{equation*}
$$

where $\mathcal{R}:\left(H^{\frac{1}{2}}\left(\Gamma_{3}\right)\right)^{\prime} \rightarrow L^{2}\left(\Gamma_{3}\right)$ is a linear and compact mapping.
Let $L \in V_{0}$ be given by the relation

$$
\begin{equation*}
(\boldsymbol{L}, \boldsymbol{v})=(\boldsymbol{\phi}, \boldsymbol{v})_{\left[L^{2}(\Omega)\right]^{d}}+(\boldsymbol{\psi}, \boldsymbol{v})_{\left[L^{2}\left(\Gamma_{2}\right)\right]^{d}} \quad \forall \boldsymbol{v} \in V_{0} \tag{58}
\end{equation*}
$$

and let $\boldsymbol{u}_{0} \in K_{0}$ satisfying the following compatibility condition:

$$
\begin{gather*}
\int_{\Omega} \boldsymbol{\sigma}\left(\boldsymbol{u}_{0}\right) \cdot \varepsilon\left(\boldsymbol{w}-\boldsymbol{u}_{0}\right) d x+J_{\boldsymbol{L}(0)}\left(\boldsymbol{u}_{0}, \boldsymbol{w}\right)-J_{\boldsymbol{L}(0)}\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{0}\right) \tag{59}\\
\geq\left(\boldsymbol{L}(0), \boldsymbol{w}-\boldsymbol{u}_{0}\right) \quad \forall \boldsymbol{w} \in K_{0}
\end{gather*}
$$

A primal variational formulation of P_{C} is as follows.
Problem \mathbf{P}_{0} : Find $\boldsymbol{u} \in W^{1,2}\left(0, T ; V_{0}\right)$ such that
$\left(P_{0}\right)\left\{\begin{array}{l}\left.\boldsymbol{u}(0)=\boldsymbol{u}_{0}, \boldsymbol{u}(t) \in K_{0} \quad \forall t \in\right] 0, T[\\ \int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{u}(t)) \cdot \boldsymbol{\varepsilon}(\boldsymbol{v}-\dot{\boldsymbol{u}}(t)) d x+J_{\boldsymbol{L}(t)}(\boldsymbol{u}(t), \boldsymbol{v})-J_{\boldsymbol{L}(t)}(\boldsymbol{u}(t), \dot{\boldsymbol{u}}(t)) \\ \left.\geq(\boldsymbol{L}(t), \boldsymbol{v}-\dot{\boldsymbol{u}}(t))+\left\langle\sigma_{N}(\boldsymbol{u}(t)), v_{N}-\dot{u}_{N}(t)\right\rangle \forall \boldsymbol{v} \in V_{0} \text { a.e. on }\right] 0, T[, \\ \left.\left\langle\sigma_{N}(\boldsymbol{u}(t)), z_{N}-u_{N}(t)\right\rangle \geq 0 \quad \forall \boldsymbol{z} \in K_{0}, \forall t \in\right] 0, T[.\end{array}\right.$

Let us define $a: V_{0} \times V_{0} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
a(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} a_{i j k l} \varepsilon_{i j}(\boldsymbol{v}) \varepsilon_{k l}(\boldsymbol{w}) d x=\int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{v}) \cdot \boldsymbol{\varepsilon}(\boldsymbol{w}) d x \quad \forall \boldsymbol{v}, \boldsymbol{w} \in V_{0} \tag{60}
\end{equation*}
$$

The bilinear form $a(\cdot, \cdot)$ satisfies

$$
\begin{aligned}
& \exists \beta>0 \text { such that }|a(\boldsymbol{v}, \boldsymbol{w})| \leq \beta\|\boldsymbol{v}\|\|\boldsymbol{w}\| \quad \forall \boldsymbol{v}, \boldsymbol{w} \in V_{0}, \\
& \exists \alpha>0 \text { such that } a(\boldsymbol{v}, \boldsymbol{v}) \geq \alpha\|\boldsymbol{v}\|^{2} \quad \forall \boldsymbol{v} \in V_{0},
\end{aligned}
$$

where $\|\cdot\|=\|\cdot\|_{\left[H^{1}(\Omega)\right]^{d}}$.

Let $\boldsymbol{G}_{1}, \boldsymbol{G}_{2} \in V_{0}$ and $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ be such that $\boldsymbol{v}_{1} \in S_{\boldsymbol{G}_{1}}, \boldsymbol{v}_{2} \in S_{\boldsymbol{G}_{2}}$. Then from the properties of σ_{N}, \mathcal{R} and a it follows that the mapping J has the following property: $\exists C, C^{\prime}>0$ such that

$$
\begin{align*}
& \left|J_{\boldsymbol{G}_{1}}\left(\boldsymbol{v}_{1}, \boldsymbol{w}_{2}\right)+J_{\boldsymbol{G}_{2}}\left(\boldsymbol{v}_{2}, \boldsymbol{w}_{1}\right)-J_{\boldsymbol{G}_{1}}\left(\boldsymbol{v}_{1}, \boldsymbol{w}_{1}\right)-J_{\boldsymbol{G}_{2}}\left(\boldsymbol{v}_{2}, \boldsymbol{w}_{2}\right)\right| \\
& \quad \leq C \bar{\mu} \int_{\Gamma_{3}}\left|\mathcal{R} \sigma_{N}\left(\boldsymbol{v}_{1}\right)-\mathcal{R} \sigma_{N}\left(\boldsymbol{v}_{2}\right) \| \boldsymbol{w}_{1}-\boldsymbol{w}_{2}\right| d s \tag{61}\\
& \quad \leq C^{\prime} \bar{\mu}\left(\left\|\boldsymbol{G}_{1}-\boldsymbol{G}_{2}\right\|+M\left\|\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right\|\right)\left\|\boldsymbol{w}_{1}-\boldsymbol{w}_{2}\right\|
\end{align*}
$$

for all $\boldsymbol{G}_{i}, \boldsymbol{w}_{i} \in V_{0}, \boldsymbol{v}_{i} \in S_{\boldsymbol{G}_{i}}, i=1,2$, where $\bar{\mu}=\|\mu\|_{L^{\infty}\left(\Gamma_{3}\right)}$.
An incremental formulation can be written by using a time discretization of $\left(P_{0}\right)$ as previously. Therefore we obtain the following sequence of incremental problems $\left(P_{0, \nu}^{\iota}\right)_{\iota=0,1, \ldots, \nu}$.

Problem $\mathbf{P}_{\mathbf{0}, \nu}^{\iota}$: Find $\boldsymbol{u}^{\iota+1} \in K_{0}$ such that
$\left(P_{0, \nu}^{\iota}\right)\left\{\begin{array}{c}a\left(\boldsymbol{u}^{\iota+1}, \boldsymbol{v}-\partial \boldsymbol{u}^{\iota}\right)+J_{\boldsymbol{L}^{\iota+1}}\left(\boldsymbol{u}^{\iota+1}, \boldsymbol{v}\right)-J_{\boldsymbol{L}^{\iota+1}}\left(\boldsymbol{u}^{\iota+1}, \partial \boldsymbol{u}^{\iota}\right) \\ \geq\left(\boldsymbol{L}^{\iota+1}, \boldsymbol{v}-\partial \boldsymbol{u}^{\iota}\right)+\left\langle\sigma_{N}\left(\boldsymbol{u}^{\iota+1}\right), v_{N}-\partial u_{N}^{\iota}\right\rangle \quad \forall \boldsymbol{v} \in V_{0}, \\ \left\langle\sigma_{N}\left(\boldsymbol{u}^{\iota+1}\right), z_{N}-u_{N}^{\iota+1}\right\rangle \geq 0 \quad \forall \boldsymbol{z} \in K_{0} .\end{array}\right.$

Then $u_{\nu} \in L^{2}\left(0, T ; V_{0}\right)$ and $\widehat{\boldsymbol{u}}_{\nu} \in W^{1,2}\left(0, T ; V_{0}\right)$ satisfy the following incremental problem:

$$
\left(P_{0, \nu}\right)\left\{\begin{array}{l}
a\left(\boldsymbol{u}_{\nu}(t), \boldsymbol{v}-\frac{d}{d t} \widehat{\boldsymbol{u}}_{\nu}(t)\right)+J_{\boldsymbol{L}_{\nu}(t)}\left(\boldsymbol{u}_{\nu}(t), \boldsymbol{v}\right) \\
\quad-J_{\boldsymbol{L}_{\nu}(t)}\left(\boldsymbol{u}_{\nu}(t), \frac{d}{d t} \widehat{\boldsymbol{u}}_{\nu}(t)\right) \geq\left(\boldsymbol{L}_{\nu}(t), \boldsymbol{v}-\frac{d}{d t} \widehat{\boldsymbol{u}}_{\nu}(t)\right) \\
\quad+\left\langle\sigma_{N}\left(\boldsymbol{u}_{\nu}(t)\right), v_{N}-\frac{d}{d t} \widehat{u}_{\nu N}(t)\right\rangle \quad \forall \boldsymbol{v} \in V_{0}, \forall t \in[0, T], \\
\left\langle\sigma_{N}\left(\boldsymbol{u}_{\nu}(t)\right), z_{N}-u_{\nu N}(t)\right\rangle \geq 0 \quad \forall \boldsymbol{z} \in K_{0}, \forall t \in[0, T] .
\end{array}\right.
$$

We have the following existence and approximation result.

Theorem 6 Under the above assumptions and if $\bar{\mu}<\frac{\alpha}{C^{\prime}}$ there exists a subsequence $\left(\boldsymbol{u}_{\nu_{p}}\right)_{p}$ of $\left(\boldsymbol{u}_{\nu}\right)_{\nu}$ such that $\boldsymbol{u}_{\nu_{p}}(t) \rightarrow \boldsymbol{u}(t)$ in $V_{0} \forall t \in$ $[0, T], \widehat{\boldsymbol{u}}_{\nu_{p}} \rightarrow \boldsymbol{u}$ in $L^{2}\left(0, T ; V_{0}\right)$ and $\frac{d}{d t} \widehat{\boldsymbol{u}}_{\nu_{p}} \rightharpoonup \dot{\boldsymbol{u}}$ in $L^{2}\left(0, T ; V_{0}\right)$, as $p \rightarrow \infty$, where \boldsymbol{u} is a solution of $\left(P_{0}\right)$.

Proof.

Taking $V=V_{0}, K=K_{0}, H=L^{2}\left(\Gamma_{3}\right)$ and

$$
\begin{aligned}
& j(\boldsymbol{L}, \boldsymbol{v}, \boldsymbol{w})=J_{\boldsymbol{L}}(\boldsymbol{v}, \boldsymbol{w})-(\boldsymbol{L}, \boldsymbol{w}), b(\boldsymbol{L}, \boldsymbol{v}, \boldsymbol{w})=\left\langle\sigma_{N}(\boldsymbol{v}), w_{N}\right\rangle \\
& K(\boldsymbol{L})=K_{0} \cap S_{\boldsymbol{L}}, \beta(\boldsymbol{L}, \boldsymbol{v})=\mu\left|\mathcal{R} \sigma_{N}(\boldsymbol{v})\right| \quad \forall \boldsymbol{v} \in S_{\boldsymbol{L}}, \boldsymbol{w} \in V_{0}
\end{aligned}
$$

we see that $\left(P_{0}\right)$ can be written in the form (P) with $f=\boldsymbol{L}$, where \boldsymbol{L} is defined by (58). Using the properties of J and Green's formula, it can be easily seen that the hypotheses of theorem 1 are satisfied and the theorem therefore follows.

- Using a similar approach, one can study the quasistatic unilateral contact problem with nonlocal friction between two linearly elastic bodies.
- The previous abstract results can be equally applied to frictional contact with normal compliance, to bilateral contact problems or, more generally, to contact interface problems.

Perspectives

- Generalizations to: viscoelasticity, monotone operators,...
- Study of the local friction laws
- Study of the corresponding dynamic cases,...

